Loading...

miércoles, 20 de agosto de 2008

TEORIA BASICA DE CIRCUITOS ELECTRICOS

TEORIA BASICA DE CIRCUITOS ELECTRICOS
Ley de Ohm

Cuando una resistencia es atravesada por una corriente se cumple que:

* Donde V es la tensión que se mide en voltios (V).
* Donde I es la intensidad de la corriente que atraviesa la resistencia, y que se mide en Amperios (A).
* Donde R es la resistencia que se mide en Ohmios (W).

Leyes de Kirchhoff
Ley de Kirchhoff de tensiones

La suma de las caídas de tensiones de todos los componentes de una malla cerrada debe ser igual a cero.

V2 + V3 + V4 - V1 = 0

Ley de Kirchhoff de corrientes

La suma de corrientes entrantes en un nodo es igual a la suma de corrientes salientes del nodo.

I1 = I2 + I3 + I4

Resistencias

Resistencias en serie

Dos o más resistencias en serie (que les atraviesa la misma intensidad) es equivalente a una única resistencia cuyo valor es igual a la suma de las resistencias.

RT = R1 + R2

Resistencias en paralelo

Cuando tenemos dos o más resistencias en paralelo (que soportan la misma tensión), pueden ser sustituidas por una resistencia equivalente, como se ve en el dibujo:

el valor de esa resistencia equivalente (RT) lo conseguimos mediante esta expresión:

Generadores

Generadores de Continua

Pueden ser tanto fuentes de corriente como de tensión, y su utilidad es suministrar corriente o tensión, respectivamente de forma continua.

Generador de corriente continua



Generador de tensión continua

Generadores de Alterna

Pueden ser tanto fuentes de corriente como de tensión, y su utilidad es suministrar corrientes o tensiones, respectivamente de forma alterna (por ejemplo: de forma senoidal, de forma triangular, de forma cuadrada., etc....).

Generador de corriente alterna



Generador de tensión alterna

Aparatos de medición.

Voltímetro.

Aparato que mide tensiones eficaces tanto en continua como en alterna, y su colocación es de forma obligatoria en "paralelo" al componente sobre el cual se quiere medir su tensión.

Voltímetro de continua

dc = direct current (corriente directa, corriente de contínua)

Voltímetro de alterna

ac = altern current (corriente alterna)

Errores al medir con voltímetros

Al medir con un voltímetro se comete un pequeño error porque dentro del voltímetro hay un resistencia interna (Rint.), que tiene un valor muy grande (se suele aproximar a infinito).

Amperímetro.

Aparato que mide el valor medio de la corriente, y su colocación es de forma obligatoria en "serie" con el componente del cual se quiere saber la corriente que le atraviesa.

Amperímetro de continua

Amperímetro de alterna

Errores al medir con amperímetros

Como ocurre con el voltímetro, al medir con le amperímetro se comete un error debido a una resistencia interna (Rint.) de valor muy pequeño (se suele aproximar a cero).

Óhmetro

Aparato que mide el valor de las resistencias, y que de forma obligatoria hay que colocar en paralelo al componente estando éste separado del circuito (sin que le atraviese ninguna intensidad). Mide resistencias en Ohmios (W).

Errores al medir con óhmetros

Como se ha visto anteriormente, todo aparato de medición comete un error que a veces se suele despreciar, con los óhmetros ocurre lo mismo, aunque se desprecie ese error hay que tener en cuenta que se suele hacer una pequeña aproximación.

VOLTAJE DE CORRIENTE ALTERNA

· LA CORRIENTE CONTINUA

La corriente continua (CC en forma abreviada), es el resultado de el flujo de electrones (carga negativa) por un conductor (alambre de cobre casi siempre), que va del terminal negativo al terminal positivo de la batería (circula en una sola dirección) , pasando por una carga. Un foco / bombillo en este caso.

La corriente continua no cambia
su magnitud ni su dirección
con el tiempo
.

No es equivocación, la corriente eléctrica sale del terminal negativo y termina en el positivo.
La corriente continua no cambia su magnitud ni su dirección con el tiempo - Electrónica UnicromLo que sucede es, que es un flujo de electrones que tienen carga negativa.

La cantidad de carga de electrón es muy pequeña. Una unidad de carga muy utilizada es el Coulomb (mucho más grande que la carga de un electrón).

1 Coulomb = la carga de 6 280 000 000 000 000 000 electrones
ó en notación científica: 6.28 x 1018 electrones

La corriente continua producida por una batería - Electrónica UnicromPara ser consecuentes con nuestro gráfico y con la convención existente, se toma a la corriente como positiva y ésta circula desde el terminal positivo al terminal negativo. Lo que sucede es que un electrón al avanzar por el conductor va dejando un espacio [hueco] positivo que a su vez es ocupado por otro electrón que deja otro espacio [hueco] y así sucesivamente, generando una serie de huecos que viajan en sentido opuesto al viaje de los electrones y que se puede entender como el sentido de la corriente positiva que se conoce.

La corriente es la cantidad de carga que atraviesa la lámpara en un segundo, entonces

Corriente = Carga en coulombs / tiempo ó I = Q / T

Si la carga que pasa por la lámpara es de 1 coulomb en un segundo, la corriente es de 1 amperio

Nota: Coulomb también llamado

Corriente Alterna (C.A.)
Frecuencia, periodo, Tensión Pico-Pico, RMS

La diferencia de la corriente alterna con la corriente continua, es que la continua circula sólo en un sentido.

La corriente alterna (como su nombre lo indica) circula por durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante.

Este tipo de corriente es la que nos llega a nuestras casas y la usamos para alimentar la TV, el equipo de sonido, la lavadora, la refrigeradora, etc.

En el siguiente gráfico se muestra la tensión (que es también alterna) y tenemos que la magnitud de ésta varía primero hacia arriba y luego hacia abajo (de la misma forma en que se comporta la corriente) y nos da una forma de onda llamada: onda senoidal.

Corriente alterna y sus características  -   Electrónica UnicromEl voltaje varía continuamente, y para saber que voltaje tenemos en un momento específico, utilizamos la fórmula; V = Vp x Seno (Θ) donde Vp = V pico (ver gráfico) es el valor máximo que obtiene la onda y Θ es una distancia angular y se mide en grados

Aclarando un poco esta última parte y analizando el gráfico, se ve que la onda senoidal es periódica (se repite la misma forma de onda continuamente)

Si se toma un período de ésta (un ciclo completo), se dice que tiene una distancia angular de 360o.

Y con ayuda de la fórmula que ya dimos, e incluyendo Θ (distancia angular para la cual queremos saber el voltaje) obtenemos el voltaje instantáneo de nuestro interés.

Para cada distancia angular diferente el valor del voltaje es diferente, siendo en algunos casos positivo y en otros negativo (cuando se invierte su polaridad.)

FRECUENCIA:(f) Si se pudiera contar cuantos ciclos de esta señal de voltaje suceden en un segundo tendríamos: la frecuencia de esta señal, con unidad de ciclos / segundo, que es lo mismo que Hertz o Hertzios.

PERIODO:(T) El tiempo necesario para que un ciclo de la señal anterior se produzca, se llama período (T) y tiene la fórmula: T = 1 / f, o sea el período (T) es el inverso de la frecuencia. (f)

VOLTAJE PICO-PICO:(Vpp) Analizando el gráfico se ve que hay un voltaje máximo y un voltaje mínimo. La diferencia entre estos dos voltajes es el llamado voltaje pico-pico (Vpp) y es igual al doble del Voltaje Pico (Vp) (ver gráfico). Ver Valor RMS, Valor Pico, Valor Promedio. Este tipo de graficos se pueden observar con facilidad con ayuda de un osciloscopio

VOLTAJE RMS.(Vrms): Se puede obtener el voltaje equivalente en corriente continua (Vrms) de este voltaje alterno con ayuda de la fórmula Vrms = 0.707 x Vp. Ver Valor RMS, Valor Pico, Valor Promedio

Este valor de voltaje es el que obtenemos cuando utilizamos un multímetro.

Ahora, algo para pensar........:

Si se prepara un voltímetro para que pueda medir voltajes en corriente alterna (a.c.) y medimos la salida de un tomacorriente de una de nuestras casas, lo que vamos a obtener es: 110 Voltios o 220 Voltios aproximadamente, dependiendo del país donde se mida.

El voltaje que leemos en el voltímetro es un VOLTAJE RMS de 110 o 220 Voltios.!!!

Cuál será el voltaje pico (Vp) de esta señal???

Revisando la fórmula del párrafo anterior despejamos Vp. Vp = Vrms / 0.707

- Caso Vrms = 110 V, Vp = 110 / 0.707 = 155.6 Voltios
- Caso Vrms = 220 V, Vp = 220 / 0.707 = 311.17 Voltios




























































































































































































































No hay comentarios: